已在相关领域的国内外期刊上发表学术论文600余篇,其中SCI收录文章400余篇,专著3部。
1、近5年已收录的SCI论文
[1] Wang X., Yuan W., Lin C-J., Wang D.Y., Luo J., Xia J.C., Zhang W., Wang F.Y., Feng X.B*., Root uptake dominates mercury accumulation in permafrost plants of Qinghai-Tibet Plateau. Communications Earth& Environemnt, 2022, 3:287. https://doi.org/10.1038/s43247-022-00619-y
[1]Zhao J., Jin L., Wu D., Xie J.W., Li J., Fu X.W., Cong Z.Y., Fu P.Q., Zhang Y., Luo X.S., Feng X.B., Zhang G., Tiedje J.M.*, Li X.D.*, Global airborne bacterial community—interactions with Earth’s microbiomes and anthropogenic activities. Proceedings of National Academy of Sciences of USA, 2022, 119(42), e2204465119. ttps://doi.org/10.1073/pnas.2204465119
[1]Xia J.C., Wang J.X., Zhang L.M., Wang X., Yuan W., Peng T., Zheng L.R., Tian W.J., Feng X.B.* Migration and transformation of soil mercury in a karst region of southwest China: Implications for groundwater contamination. Water Research, 2022, 226, 119271. https://doi.org/10.1016/j.watres.2022.119271
[2]Wu Z., Li P., Feng XB*., Assessing the factors impacting the bioaccessibility of mercury (Hg) in rice consumption by an in-vitro method. Journal of Environmental Sciences, 2022,119:119-129. https://doi.org/10.1016/j.jes.2022.04.028
[2]Sun G.Y., Feng X.B.*, Yin R.S., Wang F.Y., Lin C-J., Li K., Sommar J*., Dissociation of mercuric oxides drives anomalous isotope fractionation during net photooxidation of mercury vapor in air. Environmental Science and Technology. 2022, 56 (18): 13428-13438. DOI: 10.1021/acs.est.2c02722
[3]Jin X., Zhang F*., Baranyi V., Kemp D.B., Feng X.B., Grasby S.E., Sun G.Y., Shi Z.Q., Chen W.H., Dal Corso J., Early Jurassic massive release of terrestrial mercury linked to floral crisis. Earth and Planetary Science Letters, 2022, 598, 117842. https://doi.org/10.1016/j.epsl.2022.117842
[4]Yuan W., Wang X*., Lin C-J., Wu F., Luo K., Zhang H., Lu Z.Y., Feng X.B.* Mercury Uptake, Accumulation, and Translocation in Roots of Subtropical Forest: Implications of Global Mercury Budget. Environmental Science and Technology. 2022, 56:14154-14165. DOI: 10.1021/acs.est.2c04217
[5]Luo K., Yuan W., Liu N.T., Zeng S.F, Wang D.Y., Lu Z.Y., Wang X*., Feng X.B. Remarkable Variation in the Process of Hg Accumulation in Timberline Forests Indicates an Aggravated Hg Burden in Alpine Forests Under Climate Warming. Journal of Geophysical Research- Biogeosciences. 2022, 127, e2022JG006940. https://doi.org/10.1029/2022JG006940.
[6]Yang C.M., Wu Y.J., Zhang L.M., Sun G.Y*.,Yao H., Li Z.G., Bi X.Y., Huang Q., Feng X.B.*, Spatiotemporal Distributions and Source Apportionment of PM2.5-Bound Antimony in Beijing, China. Journal of Geophysical Research- Atmopsheres, 2022, 127, e2021JD036401. https://doi. org/10.1029/2021JD036401
[7]Chen C.Y#., Huang J-H#., Meusburger K., Li K., Fu X.W., Rinklebe J., Alewell C., Feng X.B*. The interplay between atmospheric deposition and soil dynamics of mercury in Swiss and Chinese boreal forests: A comparison study. Environmental Pollution, 2022, 307, 119483. https://doi.org/10.1016/j.envpol.2022.119483
[8]Wang J.X., Man Y., Yin R.S., Feng X.B*., Isotopic and spectroscopic investigation of mercury accumulation in houttuynia cordata colonizing historically contaminated soil. Environmental Science and Technology, 2022, 56 (12) :7997-8007. DOI: 10.1021/acs.est.2c00909
[9]Caplette J.N., Gfeller L., Lei D., Liao J., Xia J., Zhang H., Feng X.,* Mestrot A*., Antimony release and volatilization from rice paddy soils: field and microcosm study. Science of the Total Environment, 2022, 842, 156631. https://doi.org/10.1016/j.scitotenv.2022.156631
[10]Wang J.X., Ma L., Lecher R., Bradford S.A., Feng X.B., Rinklebe J.*, Biogeochemical cycle of mercury and controlling technologies: Publications in critical reviews in environmental science & technology in the period of 2017–2021. Critical Reviews in Environmental Science and Technology, 2022, https://doi.org/10.1080/10643389.2022.2071210.
[11]Zhang H*., Wang W-X., Lin C-J., Feng X.B., Shi J.B., Jiang G.B., Larssen T. Decreasing mercury levels in consumer fish over the three decades of increasing mercury emissions in China. Eco-Environment & Health, 2022, 1:46-52. https://doi.org/10.1016/j.eehl.2022.04.002
[12]Feng X.B.*, Lin C-J., Zhang H., Wang X., Fu X.W., Li P., Mercury Pollution in China: Implications on Implementation of Minamata Convention. Environmental Science: Processes & Impacts. 2022, 24:634 - 648. DOI:10.1039/d2em00039c
[13]Wang B., Yuan W., Wang X.,Li K., Lin C-J., Lu Z.Y., Feng X.B.*, Sommar J*., Canopy-level flux and vertical gradients of Hg0 stable isotopes in remote evergreen broadleaf forest show year-around net Hg0 deposition. Environmental Science and Technology, 2022, 56(9): 5950–5959. doi.org/10.1021/acs.est.2c00778
[14]Jiang Y., Ran J.B., Mao K., Yang X.F., Zhong L., Yang C.Y*., Feng X.B., Zhang H*., Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. Ecotoxicology and Environmental Safety, 2022, 236, 113464. https://doi.org/10.1016/j.ecoenv.2022.113464
[15]Liu C., Fu X.W*., Xu Y., Zhang H., Wu X., Sommar J., Zhang L.M., Wang X., Feng, X.B., Sources and transformation mechanisms of atmospheric particulate bound mercury revealed by mercury stable isotopes. Environmental Science and Technology, 2022, 56(8):5224–5233. https://doi.org/10.1021/acs.est.1c08065
[16]Liu J., Zhao L.,* Kong K., Abdelhafiz M. A., Tian S.Y., Jiang T., Meng B*., Feng X.B., Uncovering geochemical fractionation of the newly deposited Hg in paddy soil using a stable isotope tracer. Journal of Hazardous Materials, 2022, 433, 128752, https://doi.org/10.1016/j.jhazmat.2022.128752
[17]Yin R.S*., Chen D., Pan X., Deng C.Z., Chen L.M*., Song X.Y., Yu S.Y., Zhu CAW., Wei X., Xu Y., Feng X.B., Blum J.D. Lehmann B., Mantle Hg isotopic heterogeneity and evidence of oceanic Hg recycling into the mantle. Nature Communications, 2022, 13(1), 948, https://DOI.org/10.1038/s41467-022-28577-1
[18]Tang S.L*., Ding Y.X., Zhu G.Y.*, Feng X.B., Zhang H.S., Li P.G., Mercury isotopes in shale gas from Wufenglongmaxi shale formation of Sichuan Basin, Southern China: a preliminary investigation. Frontiers in Earth Science, 2022, 10, 809418, https://doi.org/10.3389/feart.2022.809418
[19]Ali W., Zhang H*., Mao K., Shafeeque M., Aslam M.W., Yang X.F., Zhong L., Feng X.B., Podgorski J*., Chromium contamination in paddy soil-rice systems and associated human health risks in Pakistan. Science of the Total Environment. 2022, 826, 153910. https://doi.org/10.1016/j.scitotenv.2022.153910
[20]Chang C.Y., Zhang H.,* Huang F., Feng X.B., Understanding the translocation and bioaccumulation of cadmium in the Enshi area, China: possible impact by the interaction of Se and Cd. Environmental Pollution, 2022, 300, 118927. https://doi.org/10.1016/j.envpol.2022.118927
[21]Xia S.W., Yuan W., Lin L.X., Yang X.D*., Feng X.B., Li X.M., Liu X., Chen P.J., Zeng S.F., Wang D.Y., Su Q.Z., Wang X*. Latitudinal gradient for mercury accumulation and isotopic evidence for post-depositional processes among three tropical forests in Southwest China. Journal of Hazardous Materials, 2022, 429, 128295. https://doi.org/10.1016/j.jhazmat.2022.128295
[22]Zhu W., Fu X.W.*, Zhang H., Liu C., Skyllberg U., Sommar J., Yu B., Feng X.B.* Mercury isotope fractionation during the exchange of (Hg0) between the atmosphere and land surfaces: implications for Hg(0) exchange processes and controls. Environmental Sciences and Technology, 2022, 56(2): 1445-1457. https://doi.org/10.1021/acs.est.1c05602
[23]Li Z.G*., Huang Y.M., Li X.Y., Wang G., Wang Q.F., Sun G.Y., Feng X.B.* Substance flow analysis of Zinc in two preheater-precalciner cement plants and the associated atmospheric emissions. Atmosphere, 2022, 13, 128. https://doi.org/10.3390/atmos13010128
[24]Yuan W., Wang X*., Lin C-J., Zhang H., Feng X.B., Lu Z.Y. Impacts of extreme weather on mercury uptake and storage in subtropical forest ecosystems. Journal of Geophysical Research- Biogeosciences, 2022, 127, e2021JG006681.https://doi.org/10.1029/2021JG006681
[25]Wang Q.F.*, Wang D., Li Z.G.*, Fan L.L., Zhang L.M., Feng X.B., Utilization of desulfurization gypsum potentially impairs the efforts for reducing Hg emissions from coal-fired power plants in China. Fuel, 2022, 312, 122898, https://doi.org/10.1016/j.fuel.2021.122898
[26]Aslam M.W., Meng B*., Abdelha M.A., Liu J., Feng X.B*., Unravelling the interactive effect of soil and atmospheric mercury influencing mercury distribution and accumulation in the soil-rice system. Science of the Total Environment, 2022, 803, 149967, DOI:10.1016/j.scitotenv.2021.149967
[27]Liu J., Lu B.Q., Poulain A.J., Zhang R., Zhang T., Feng X.B., Meng B.* The underappreciated role of natural organic matter bond Hg(II) and nanoparticulate HgS as substrates for methylation in paddy soils across a Hg concentration gradient. Environmental Pollution, 2022, 292, 118321, https://doi.org/10.1016/j.envpol.2021.118321
[28]Wang L., Han J.L., Katuwal H.B., Xia P.H*., Xu X.H*., Feng X.B., Qiu G.L. Occurrence of total and methylmercury in rice: exposure and health implications in Nepal. Ecotoxicology and Environmental Safety, 2021, 228, 113019, https://doi.org/10.1016/j.ecoenv.2021.113019
[29]Zhang W#., Sun G.Y#., Yin R.S., Feng X.B.*, Yao Z.X., Fu X.W., Shang L.H*., Separation of methylmercury from biological samples for stable isotopic analysis. Journal of Analytical Atomic Spectrometry, 2021, 36, 2415 – 2422, DOI: 10.1039/D1JA00236H
[30]Zhao H.F., Meng B*., Sun G.Y., Lin C.J., Feng X.B.*, Sommar J*., Chemistry and isotope fractionation of divalent mercury during aqueous reduction mediated by selected oxygenated organic ligands. Environmental Science and Technology, 2021, 55(19):13376-13386. DOI:10.1021/acs.est.1c03171
[31]Sun G.Y.#, Wu Y.J.#, Feng X.B*., Wu X., Li X.Y., Deng Q.W., Wang F.Y., Fu X.W., Precise Analysis of Antimony Isotopic Composition by MC-ICP-MS. Chemical Geology, 2021, 582 , 120459, https://doi.org/10.1016/j.chemgeo.2021.120459
[32]Chang C.Y., Yin R.S., Huang F., Wang R.R., Chen C.Y., Mao K., Feng X.B., Zhang H*. A new method of predicting the contribution of TGM to Hg in white rice: using leaf THg and implications for Hg risk control in Wanshan Hg mining area. Environmental Pollution, 2021, 288, 117727, DOI:10.1016/j.envpol.2021.117727
[33]Lv W.Q#., Zhan T.L#., Abdelhafiz M.A., Feng X.B., Meng B*., Selenium-amended biochar mitigates inorganic mercury and methylmercury accumulation in rice (Oryza sariva L.). Environmental Pollution, 2021, 291, 118259, https://doi.org/10.1016/j.envpol.2021.118259
[34]Yang S.C., Wang B., Qin C.Y., Yin R.S., Li P*., Liu J.L., Point D., Maurice L., Sonke J.E., Zhang L.M., Feng X.B., Compound –specific stable isotope analysis provides new insights for tracking human monomethylmercury exposure sources. Environmental Science and Technology, 2021, 55:12493-12503, https://doi.org/10.1021/acs.est.1c01771
[35]Yuan W., Wang X., Lin C-J., Sommar J.O., Wang B., Lu Z.Y., Feng X.B*. Quantification of atmospheric mercury deposition to and legacy re-emission from a subtropical forest floor by mercury isotopes. Environmental Science and Technology, 2021, 55:12352-12361. https://doi.org/10.1021/acs.est.1c02744
[36]Xia J.C., Wang J.X., Zhang L.M., Wang X., Yuan W., Zhang H., Peng T., Feng X.B*., Mass balance of nine trace elements in two Karst catchments in Southwest China. Science of the Total Environment, 2021, 786, 147504, https://doi.org/10.1016/j.scitotenv.2021.147504
[37]Wang B., Chen M., Ding L., Zhao Y.H., Man Y., Feng L., Li P*., Zhang L.M., Feng X.B. Fish, rice, and human hair mercury concentrations and health risks in typical Hg-contaminated areas and fish-rich areas, China. Environment International, 2021, 154, 106561, https://doi.org/10.1016/j.envint.2021.106561
[38]Aslam M.W., Meng B.*, Abdelhafiz M.A, Liu J., Feng X.B.* Unravelling the interactive effect of soil and atmospheric mercury influencing mercury distribution and accumulation in the soil-rice system. Science of the Total Environment, 2021, 803, 149967, https://doi.org/10.1016/j.scitotenv.2021.149967
[39]Jing M., Lin D., Wu P.P., Kainz M.J., Bishop K., Yan H.Y*., Li Q.H., Feng X.B., Diet influence on mercury bioaccumulation as revealed by polyunsaturated fatty acids in zoobenthos from two contrasting environments: Chinese reservoirs and Swedish lakes. The Science of the Total Environment, 2021, 782, 146410, https://doi.org/10.1016/j.scitotenv.2021.146410
[40]Wang X*., Yuan W., Lin C-J., Wu F., Feng X,B*. Stable mercury isotopes stored in Masson Pinus tree rings as atmospheric mercury archives. Journal of Hazardous Materials, 2021, 415, 125678. DOI: 10.1016/j.jhazmat.2021.125678
[41]Man Y., Wang B., Wang J.X*., Slany M., Yan H.Y*., Li P., El-Naggar A., Shaheen S.M., Rinklebe J., Feng X.B., Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environment International, 2021, 153, 106527. https://doi.org/10.1016/j.envint.2021.106527
[42]Wang X., Yuan W., Lin C-J., Feng X.B.*, Mercury Cycling and Isotopic Fractionation in Global Forest, Critical Reviews in Environmental Science and Technology, 2021, 10.1080/10643389.2021.1961505
[43]Zhang H., Wu X., Deng Q.W., Zhang L.M., Fu X.W*., Feng X.B. Extraction of ultratrace dissolved gaseous mercury and reactive mercury in natural freshwater for stable isotope analysis. Journal of Analytical Atomic Sepctrometry. 2021, 36, 1921, DOI: 10.1039/d1ja00212krsc.li/jaas
[44]Wang J.X., Shaheen S.M., Jing M., Anderson C.W.N., Swertz A-C., Wang S-L., Feng X.B., Rinklebe J*., Mobilization, methylation and demethylation of mercury in a paddy soil under systematic redox changes. Environmental Science and Technology, 2021, 55, 10133?10141, https://doi.org/10.1021/acs.est.0c07321
[45]Huang Y. M., Liu J. L.*, Feng X.B., Hu G.J., Li X.Y., Zhang L.M., Yang L., Wang G., Sun G.Y., Li Z.G.* Fate of Thallium during precalciner cement production and the atmospheric emissions. Process Safety and Environmental Protection, 2021, 151, 158-165. DOI :10.1016/j.psep.2021.05.013
[46]Wang Q.F., Wang D., Li Z.G., Zhang L.M., Feng X.B., Mercury in desulfurization gypsum and its dependence on coal properties in coal-fired power plants. Fuel, 2021, 293, 120413, DOI :10.1016/j.fuel.2021.120413
[47]Ali J., Tuzen M*., Feng X.B., Kazi T.G., Determination of trace level of selenium in natural water, agriculture soil and food samples by vortex assisted liquid-liquid microextraction method: multivariate techniques. Food Chemistry, 2021, 344, 128706. https://doi.org/10.1016/j.foodchem.2020.128706
[48]Xia J.C., Wang J. X., Zhang L.M., Wang X., Yuan W., Anderson C.W.N., Chen C.Y., Peng T., Feng X.B.* Significant mercury efflux from a Karst region in Southwest China- results from mass balance studies in two catchments. Science of the Total Environment, 2021, 769, 144892, https://doi.org/10.1016/j.scitotenv.2020.144892
[49]Fu X.W*., Liu C., Zhang H., Xu Y., Li J., Lyu X.P., Zhang G., Guo H., Wang X., Zhang L.M., Feng X.B*. Isotopic compositions of atmospheric total gaseous mercury in 10 Chinese cities and implications for land surface emissions. Atmospheric Chemistry and Physics, 2021(9):6721-6734. DOI :10.5194/acp-21-6721-2021
[50]Du B.Y., Li P*., Feng X.B.*, Yin R.S., Zhou J., Manrice L., Monthly variations in mercury exposure of school children and adults in an industrial area of southwestern China. Environmental Research, 2021, 147, 106336, https://doi.org/10.1016/j.envres.2020.110362
[51]Zhu G.Y*., Wang P.J., Li T.T., Zhao K., Zheng W., Feng X.B., Shen J., Grasby S.E., Sun G.Y., Tang S.L., Han H.H. Mercury record of intense hydrothermal activitiy during the early Cambrian, South China. Palaeogeography Palaeoclimatology Palaeoecology, 2021, 568, 110294, DOI :10.1016/j.palaeo.2021.110294
[52]Jiang J.L., Wu Y.J., Sun G.Y.,* Zhang L.M., Li Z.G., Sommar J., Yao H., Feng X.B.* Characteristics, accumulation and potential health risks of antimony in atmospheric particulate matter. ACS OMEGA, 2021, 6:9460-9470. https://doi.org/10.1021/acsomega.0c06091
[53]Abdelhafiz M.A., Elnazer A.A., Seleem E.M., Mostafa A., Al-Gamal A.G., Salman S.A., Feng X.B.* Chemical and bacterial quality monitoring of the Nile River water and associated health risks in Qena-Sohag sector, Egypt. Environmental Geochemistry and Health, 2021, 43:4089–4104, https://doi.org/10.1007/ s10653-021-00893-3.
[54]Tong H., Zheng C.J., Li B., Swanner E.D., Liu C.S*., Chen M.J., Xia Y.F., Liu Y.H., Ning Z.P., Li F.B., Feng X.B. Microaerophilic Oxidation of Fe(II) Coupled with Simultaneous Carbon Fixation and As(III) Oxidation and Sequestration in Karstic Paddy Soil. Environmental Science and Technology, 2021, 55(6): 3634-3644. DOI:10.1021/acs.est.0c05791
[55]Song Z.C#., Wang C#., Ding L., Chen M., Hu Y.X., Li P*., Zhang L.M., Feng X.B., Soil mercury pollution caused by typical anthropogenic sources in China: Evidence from stable mercury isotope measurement and receptor model analysis. Journal of Cleaner Production, 2021, 288, 125687, https://doi.org/10.1016/j.jclepro.2020.125687
[56]Fan H.F*., Fu X.W*., Ward J.F., Yin R.S., Wen H.J., Feng X.B., Mercury isotopes track the cause of carbon perturbations in the Ediacaran ocean. Geology, 2021, 49:248–252. https://doi.org/10.1130/G48266.1
[57]Li Z.G.*, Chen X.F., Liu W.L., Li T.S., Qiu G.L., Yan H.Y., ,Wang M.M., Chen J., Sun G.Y., Wang Q. F., Feng X.B.* Soil and ambient air mercury as an indicator of coal-fired power plant emissions: a case study in North China. Environmental Science and Pollution Research, 2021, 28(25): 33146-33157. https://doi.org/10.1007/s11356-021-12842-9
[58]Du B.Y., Yin R.S., Fu X.W., Li P.* Feng X.B*., Maurice L., Use of mercury isotopes to quantify sources of human inorganic mercury exposure and metabolic processes in the human body. Environment International, 2021,147:106336. https://doi.org/10.1016/j.envint.2020.106336
[59]Jing M., Lin D., Lin J., Li Q.H., Yan H.Y.*, Feng X.B., Mercury, microcystins and Omega-3 polyunsatuated fatty acids in farmed fish in eutrophic reservoir: risk and benefit assessment. Environmental Pollution, 2021,782, 146410. https://doi.org/10.1016/j.envpol.2020.116047
[60]Li X.Y., Li Z.G.*, Chen J., Zhang L.M., Yin R.S., Sun G.Y., Meng B., Cui Z.K., Feng X.B.* Isotope signatures of atmospheric mercury emitted from residential coal combustion, Atmospheric Environment, 2021, 246, 118175, DOI :10.1016/j.atmosenv.2020.118175
[61]Nguyen L.S.P., Sheu G.R*., Fu X.W*., Feng X.B., Lin N-H., Isotopic composition of total gaseous mercury at a high-altitude tropical forest site influenced by air masses from the East Asia continent and the Pacific Ocean. Atmospheric Environment. 2021. 246, 118110. https://doi.org/10.1016/j.atmosenv.2020.118110
[62]Zhao H.F#., Sun G.Y#., Li Z.G.*, Zhang L.M., Feng X.B*, Li X.Y., Wu T.T., Total mercury and mercury isotope signatures in reservoir sediment reflecting the landscape changes and agricultural activities in northeast China. Catena, 2021, 197, 104983. https://doi.org/10.1016/j.catena.2020.104983
[63]Wang Q.F*., Li Z.G., Feng X.B., Wang A., Li X.Y., Wang D., Fan L.L., Mercury accumulation in vegetable Houttuynia cordata Thunb. from two different geological areas in southwest China and implications for human consumption. Scientific Reports, 2021, 11(1),52. DOI:10.1038/s41598-020-80183-7
[64]Zhou X., Feng X.B., Bi X.Y., Li X.Y., Wang Q.F., Li S., He T.R., Li Z.G*., Partitioning behaviors of zinc in eight coal-fired power plants with different fueled coals and air pollution control devices. Environmental Science and Pollution Research, 2021, 28(17):21599-21609. https://doi.org/10.1007/s11356-020-11524-2
[65]Li X.Y., Chen J., Tang L., Wu T.T., Fu C.C., Li Z.G.*, Sun G.Y., Zhao H.F., Zhang L.M., Li Q.H., Feng X.B.* Mercury isotope signatures of a pre-calciner cement plant in Southwest China. Journal of Hazardous Materials, 2021, 401, 123384. https://doi.org/10.1016/j.jhazmat.2020.123384
[66]Guo Y.K., Mao K., Cao H.R., Ali W., Lei D., Teng D.Y., Chang C.Y., Yang X.F., Yang Q., Niazi N., K., Feng X.B., Zhang H*. Exogenous selenium (cadmium) inhabits the absorption and transportation of cadmium (selenium) in rice. Environmental Pollution, 2021, 268, 115829. https://doi.org/10.1016/j.envpol.2020.115829
[67]Li S., Bi X.Y., Li Z.G*, Wang H., Li X.Y., Feng X.B., Sun G.Y., Chen J., Meng B*. Heavy Metal(loid)s Contamination in Ground Dust and Associated Health Risks at a Former Indigenous Zinc Smelting Area. International Journal of Environmental Research and Public Health, 2021, 18(3), 893, DOI:10.3390/ijerph18030893
[68]Zhao H.F., Meng B*., Sun G.Y., Lin C-J., Feng X.B.*, Sommar J*., Chemistry and isotope fractionation of divalent mercury during aqueous reduction mediated by selected oxygenated organic ligands. Environmental Science and Technology, 2021, 55(19):13376–13386, doi:10.1021/acs.est.1c03171
[69]Li Z.G.*, Zhou X., Wang Q.F., Li X.Y., Zhang L.M., Wang D., He T.R., Cao Y., Feng X.B.* Behavior of thallium in pulverized coal utility boiler installations in Southwest China. Journal of the Air & Waste Management Association, 2021, 71(4): 488-500. https://doi.org/10.1080/10962247.2020.1853630
[70]Liu J., Meng B*., Poulain A.J., Meng Q.Y., Feng X.B.* Stable isotope tracers identify sources and transformations of mercury in rice (Oryza sativa L.) growing in a mercury mining area. Fundamental Research, 2021, 1, 259-268. https://doi.org/10.1016/j.fmre.2021.04.003
[71]Xia J.C., Wang J.X.*, Zhang L.M., Anderson C.W.N., Wang X., Zhang H., Dai Z., Feng X.B.*, Screening of native low mercury accumulation crops in a mercury-polluted mining region: agricultural planning to manage mercury risk in farming communities. Journal of Cleaner Production, 2020, 262, 121324, DOI: 10.1016/j.jclepro.2020.121324
[72]Wu Q.Q., Hu H.Y*., Meng B*. Wang B.L., Poulain A.J., Zhang H., Liu J.L., Bravo A.G., Kevin B., Bertilsson S., Feng X.B., Methanogenesis is an important process in controlling MeHg concentration in rice paddy soils affected by mining activities. Environmental Science and Technology, 2020, 54(21):13517-13526. DOI:10.1021/acs.est.0c00268
[73]Zhang H., Tan Q.Y., Zhang L.M., Fu X.W.*, Feng X.B. A laboratory study on the isotopic composition of Hg(0) emitted from Hg-enriched soils in Wanshan Hg mining area. Journal of Geophysical Research-Atmospheres, 2020, 125, e2020JD032572. https://doi.org/ 10.1029/2020JD032572
[74]Qin C.Y., Du B.Y., Rin R.S., Meng B., Fu X.W., Li P.*, Zhang L.M., Feng X.B.*, Isotopic fractionation and source appointment of methylmercury and inorganic mercury in a paddy ecosystem. Environmental Science and Technology, 2020, 54, 14334?14342. https://dx.doi.org/10.1021/acs.est.0c03341
[75]Feng L., Zhang C.C., Lin H.H., Li P*., Hu X.F., Wang H.Q., Chan H.M., Feng X.B., Impact of low-level mercury exposure on intelligence quotient in children via rice consumption. Ecotoxicology and Environmental Safety, 2020, 202, 110870. DOI: 10.1016/j.ecoenv.2020.110870
[76]Xu Z.D., Lu Q.H., Xu X.H., Feng X.B., Liang L.C., Liu L., Li C., Chen Z., Qiu G.L.*, Multi-pathway mercury health risk assessment, categorization and prioritization in an abandoned mercury mining area: a pilot study for implementation of the Minamata Convention. Chemosphere, 2020, 260, 127582. https://doi.org/10.1016/j.chemosphere.2020.127582
[77]Li Z.*, Li X., Zhang L., Li S., Chen J., Feng X.*, Zhao D., Wang Q., Gao Z., Xiong B. Partitioning of rare earth elements and yttrium (REY) in five coal-fired power plants in Guizhou, Southwest China. Journal of Rare Earths, 2020, 38(11):1257-1264. DOI: 10.1016/j.jre.2019.12.013
[78]Wang X*., Yuan W., Lin C-J., Luo J., Wang F.Y., Feng X.B*., Liu C., Fu X.W., Underestimated sink of atmospheric mercury in deglaciated forest chronosequence. Environmental Science and Technology, 2020, 54, 8083?8093. https://doi.org/10.1021/acs.est.0c01667
[79]Yuan W., Wang X., Lin C-J., Wu C., Zhang L.M., Wang B., Sommar J., Lu Z.Y., Feng X.B.*, Stable Mercury Isotope Transition during Postdepositional Decomposition of Biomass in a Forest Ecosystem over Five Centuries. Environmental Science and Technology, 2020, 54, 8739?8749. https://doi.org/10.1021/acs.est.0c00950
[80]Zhang H., Tan Q.Y., Zhang L.M., Fu X.W*., Feng X.B. A laboratory study on the isotopic composition of Hg(0) emitted from Hg-enriched soils in Wanshan Hg mining area. Journal of Geophysical Research-Atmospheres, 125, e2020JD032572. doi/10.1029/2020JD032572.
[81]Teng D.Y., Mao K*., Ali W., Xu G.M., Huang G.P., Niazi N.K., Feng X.B., Zhang H*., Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil. RSC Advances, 2020, 10(39): 23221-23232. DOI: 10.1039/d0ra01507e
[82]Ali W., Mao K., Zhang H*., Junaid M., Xu N., Rasool A., Feng X.B., Yang Z., Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. Journal of Hazardous Materials. 2020, 397, 122720, https://doi.org/10.1016/j.jhazmat.2020.122720.
[83]Mao K., Zhang K.K., Du W., Ali W., Feng X.B., Zhang H*., The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Current Opinion in Environmental Science and Health, 2020, 17:1-7. https://doi.org/10.1016/j.coesh.2020.04.006
[84]Wang Q.F*., Li Z.G., Feng X.B., Li X.Y., Wang D., Sun G.Y., Peng H.H., Vegetable Houttuynia cordata Thunb. as an important human mercury exposure route in Kaiyang county, Guizhou province, SW China. Ecotoxicology and Environmental Safety, 2020, 197, 110575, https://doi.org/10.1016/j.ecoenv.2020.110575
[85]Chang C.Y., Chen C.Y., Rin R.S*., Shen Y., Mao K., Yang Z.G., Feng X.B*., Zhang H*. Bioaccumulation of Hg in rice leaf facilitates selenium bioaccumulation in rice (Oryza sativa L.) leaf in the Wanshan mercury mine. Environmental Science and Technology, 2020, 54, 3228?3236, https://dx.doi.org/10.1021/acs.est.9b06486
[86]Zhao L., Meng B*., Feng X.B*., Mercury methylation in rice paddy and accumulation in rice plant: a review. Ecotoxicology and Environmental Safety, 2020, 195, 110462, https://doi.org/10.1016/j.ecoenv.2020.110462
[87]Sun R.Y., Sun G.Y., Kwon S.Y., Feng X.B., Kang S.C., Zhang Q.G., Huang J*., Yin R.S.* Mercury biogeochemistry over the Tibetan Plateau: An overview. Critical Reviews in Environmental Science and Technology, 2020, doi.org/10.1080/10643389.2020.1733894
[88]Yao H., Zhao Y.J., Lin C-J*., Yi F.J., Liang X.F., Feng X.B.* Development of a novel composite resin for dissolved divalent mercury measurement using diffusive gradients in thin films. Chemosphere, 2020, 251, 126231, https://doi.org/10.1016/j.chemosphere.2020.126231
[89]Xing Y., Wang J.X*., Shaheen S.M., Feng X.B., Chen Z., Zhang H*., Rinklebe J., Mitigation of mercury accumulation in rice using rice hull-derived biochar as soil amendment: A field investigation. Journal of Hazardous Materials, 2020, 388, 121747, doi.org/10.1016/j.jhazmat.2019.121747
[90]Wang J.X*., Shaheen S.M., Anderson, C., Xing, Y., Liu, S.R., Xia, J.C., Feng, X.B*., Rinklebe, J. Nano-activated carbon reduces mercury mobility and uptake by oryza sativa l: mechanistic investigation using spectroscopic and microscopic techniques. Environmental Science and Technology, 2020, 54, 2698?2706, .doi.org/10.1021/acs.est.9b05685
[91]Sun G.Y., Feng X.B*., Yang C.M., Zhang L.M., Yin R.S., Li Z*., Bi X.Y., Wu Y.J., Levels, sources, isotope signatures, and health risks of mercury in street dust across China. Journal of Hazardous Materials, 2020, 10.1016/j.jhazmat.2020.122276
[92]Wang X., Luo J., Yuan W., Lin C-J., Wang F.Y., Liu C., Wang G.X., Feng X*. Global warming accelerates uptake of atmospheric mercury in glacier retreated regions. Proceedings of National Academy of Sciences of USA, 2020, 117 (4): 2049-2055, doi:10.1073/pnas.1906930117
[93]Hu H.Y.*, Wang B., Bravo A.G., Bj?rn E., Skyllberg U., Amouroux D., Tessier E., Zopfi J., Feng X.B., Bishop K., Nilsson M.B., Bertilsson S., Shifts in mercury methylation across a peatland chronosequence: from sulfate reduction to methanogenesis and syntrophy. Journal of Hazardous Materials, 2020, 387: 121967. DOI:10.1016/j.jhazmat.2019.121967
[94]Fu X.W.*, Zhang H., Liu C., Zhang H., Lin C-J., Feng X.B.*, Significant Seasonal Variations in Isotopic Composition of Atmospheric Total Gaseous Mercury at Forest Sites in China Caused by Vegetation and Mercury Sources. Environmental Science and technology, 2019, 53(23): 13748-13756. DOI: 10.1021/acs.est.9b05016
[95]Yuan W., Wang X., Lin C-J., Sommar J., Lu Z.Y., Feng X.B*. Process factors driving dynamic exchange of elemental mercury vapor over soil in broadleaf forest ecosystems. Atmospheric Environment, 2019, 219, 117047, DOI: 10.1016/j.atmosenv.2019.117047
[96]Xu Q.Q., Zhao L., Wang Y.M., Xie Q., Yin D.L., Feng X.B., Wang D.Y*. Bioaccumulation characteristics of mercury in fish in the three Gorges Reservoir, China. Environmental Pollution, 2019, 243:115-126. DOI: 10.1016/j.envpol.2018.08.048
[97]Xu Z.Z, Fan H.W*., Shi Z.W., Tan C., Cui M.M., Tang S.C., Qiu G.L., Feng X.B*., Mercury and methylmercury bioaccumulation in a contaminated bay. Marine Pollution Bulletin, 2019, 143:134-139, DOI: 10.1016/j.marpolbul.2019.04.032
[98]Wang J.X., Shaheen S.M., Swertz A-C., Rennert T., Feng X.B., Rinklebe J*.,Sulfur-modified organoclay promotes plant uptake and affects geochemical fractionation of mercury in a polluted floodplain soil. Journal of Hazardous Materials, 2019, 371:687-693. DOI:10.1016/j.jhazmat.2019.03.010
[99]Tang S.L*., Zhou Y., Yao X., Feng X.B*., Li Z., Wu G., Zhu G.Y., The mercury isotope signatures of coalbed gas and oil-type gas: Implications for the origins of the gases. Applied Geochemistry, 2019, 104415, DOI:10.1016/j.apgeochem.2019.104415.
[100]Li K., Lin C-J., Yuan W., Sun G.Y., Fu X.W*., Feng X,B.*, An improved method for recovering and preconcentrating mercury in natural water samples for stable isotope analysis. Journal of Analytical Atomic Spectrometry, 2019, 34(11), 2303-2313, DOI:10.1039/c9ja00174c.
[101]Li X.Y., Bi X.Y., Li Z.G.*, Zhang L.M., Li S., Chen J., Feng X.B*., Fu X.W. Atmospheric Lead Emissions from Coal-Fired Power Plants with Different Boilers and APCDs in Guizhou, Southwest China. Energy and Fuels, 2019, 33, 11, 10561-10569. DOI:10.1021/acs.energyfuels.9b02188.
[102]Wang X., Yuan W., Lin C-J., Zhang L.M., Zhang H., Feng X.B*., Climate and vegetation as primary drivers for global mercury storage in surface soil. Environmental Science and Technology, 2019, 53(18):10665-10675, DOI:10.1021/acs.est.9b02386
[103]Sun R.G., Mo Y.F., Feng X.B.*, Zhang L.M., Jin L., Li Q.H., Effects of typical algae species (Aphanizomenon flosaquae and Microcystis aeruginosa) on photoreduction of Hg2+ in water body. Journal of Environmental Science, 2019, 85: 9-16, DOI: 10.1016/j.jes.2019.02.012
[104]Wang J.X., Sun X.C., Xing Y., Xia J.C., Feng X.B.* In-situ immobilization of mercury and arsenic-enriched mine tailing from a typical Carlin-type gold mining site in southwestern part of China. Journal of Cleaner Production, 2019, 240, 118171, DOI:10.1016/j.jclepro.2019.118171
[105]Liu K.Y., Wu Q., Wang L., Wang S.X.*, Liu T., Ding D., Tang Y., Li G., Tian H., Duan L., Wang X., Fu X.W., Feng X.B., Hao J.M., Measure-Specific Effectiveness of Air Pollution Control on China’s Atmospheric Mercury Concentration and Deposition during 2013-2017. Environmental Science and Technology, 2019, 53( 15): 8938-8946. DOI: 10.1021/acs.est.9b02428
[106]Cui Z.K., Li Z.G.*, Zhang Y.Z., Wang X.F., Li Q.L., Zhang L.M., Feng X.B*., Li X.Y., Shang L.H., Yao Z.X., Atmospheric Mercury Emissions from Residential Coal Combustion in Guizhou Province, Southwest China. Energy and Fuels, 2019, 33(3):1937-1943.
[107]Li Z.G*., Chen X.F., Liu W.L., Li T.S., Chen J., Lin C-J., Sun G.Y., Feng X.B.* Evolution of four-decade atmospheric mercury release from a coal-fired power plant in North China. Atmospheric Environment, 2019, 213:526-533. DOI:10.1016/j.atmosenv.2019.06.045
[108]Wang F.Y*., Outridge P.M., Feng X.B., Meng B., Heimbürger-Boavida L.E., Mason R.P. How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? – Implications for evaluating the effectiveness of the Minamata Convention. Science of the Total Environment, 2019, 674:58-70. DOI: 10.1016/j.scitotenv.2019.04.101
[109]Tang W.L., Hintelmann H., Gu B.H., Feng X.B., Liu Y.R., Gao Y.X., Zhao J.T., Zhu H.K., Lei P., Zhong H*., Increased Methylmercury Accumulation in Rice after Straw Amendment. Environmental Science and Technology, 2019, 53(11):6144-6153. DOI: 10.1021/acs.est.8b07145
[110]Li Z.G*., Li X.Y., Liu J., Zjang L., Chen J., Feng X.B*., Stone coal as a potential atmospheric mercury source in Da-Ba-Shan mountain areas, China. International Journal of Coal Geology, 2019, 124(4):959-972. DOI: 10.1016/j.coal.2019.03.007
[111]Shaheen S.M., Wang J.X., Swertz A., Feng X.B., Bolan N., Rinklebe J*., Enhancing phytoextraction of potentially toxic elements in a polluted floodplain soil using sulfur-impregnated organoclay. Environmental Pollution, 2019, 248:1059-1066. DOI: 10.1016/j.envpol.2019.02.073
[112]Xu X.H., Yan M., Liang L.C., Lu Q.H., Han J.L., Liu L., Feng X.B., Guo J.Y., Wang Y.J., Qiu G.L*., Impacts of selenium supplementation on soil mercury speciation, and inorganic mercury and methylmercury uptake in rice (Oryza sativa L.). Environmental Pollution, 2019, 249:647-654. DOI: 10.1016/j.envpol.2019.03.095
[113]Liu J.L., Wang J.X*., Ning Y.Q., Yang S.C., Wang P.C., Shaheen S.M., Feng X.B., Rinklebe J., Methylmercury production in a paddy soil and its uptake by rice plants as affected by different geochemical mercury pools. Environment International, 2019, 129:461-468. DOI: 10.1016/j.envint.2019.04.068
[114]Li X.Y., Li Z.G*., Fu C.C., Tang L., Chen J., Wu T.T., Lin C-J., Feng X.B.*, Fu X.W., Fate of mercury in two CFB utility boilers with different fueled coals and air pollution control devices. Fuel, 2019, 251:651-659. DOI: 10.1016/j.fuel.2019.04.071
[115]Zhang H., Nizzetto L*., Feng X*., Borga K., Sommar J., Fu X.W.*, Zhang H., Zhang G., Larssen T., Assessing the air-surface exchange and fate of mercury in a subtropical forest using a novel passive exchange-meter device. Environmental Science and Technology, 2019, 53(9):4869-4879. DOI: 10.1021/acs.est.8b06343
[116]Fu X.W*., Zhang H., Feng X.B*., Tang Q.Y., Ming L., Liu C., Zhang L.M., Domestic and transboundary sources of atmospheric particulate mercury in remote areas of China: evidence from mercury isotopes. Environmental Science and Technology, 2019, 53( 4), 1947-1957. DOI: 10.1021/acs.est.8b06736.
[117]Sun G.Y., Feng X.B*., Yin R.S., Zhao H.F., Zhang L.M., Sommar J., Li Z.G., Zhang H.*, Corn (Zea mays L.): A low methylmercury staple cereal source and an important biospheric sink of atmospheric mercury, and health risk assessment. Environment International, 2019, 131,104971. DOI: 10.1016/j.envint.2019.104971
[118]Xu X.H., Yan M., Liang L., Lu Q., Han J., Liu L., Feng X.B., Guo J., Wang Y., Qiu G*., Impacts of selenium supplementation on soil mercury speciation, and inorganic mercury and methylmercury uptake in rice (Oryza sativa L.). Environmental Pollution, 2019, 249:647-654. DOI: 10.1016/j.envpol.2019.03.095
[119]Zhao H.F., Yan H., Zhang L.M., Sun G.Y., Li P*, Feng X.B*., Mercury contents in rice and potential risks across China. Environmental International, 2019, 126,406-412. DOI: 10.1016/j.envint.2019.02.055
[120]Liu T., Wang J.X.*, Feng X.B*., Zhang H., Zhu D.Q., Cheng S.G., Spectral Insight into Thiosulfate-induced Mercury Speciation Transformation in a Historically Polluted Soil. Science of the Total Environment, 2019, 657, 938-944,DOI: 10.1016/j.scitotenv.2018.12.010
[121]Liu C., Fu X.W.*, Zhang H., Ming L., Xu H., Zhang L.M., Feng X.B., Sources and outflows of atmospheric mercury at Mt. Changbai, northeastern China. Science of the Total Environment, 2019, 663,274-284. DOI:10.1016/j.scitotenv.2019.01.332
[122]Yuan W., Sommar J.,* Lin C-J., Wang X., Li K., Liu Y., Zhang H., Lu Z.Y., Wu C.S., Feng X.B*., Stable Isotope Evidence Shows Re-emission of Elemental Mercury Vapor Occurring After Reductive Loss from Foliage. Environmental Science and Technology, 2019, 53, 651?660,DOI: 10.1021/acs.est.8b04865
[123]Wang C., Song Z.C., Li Z.G., Zhu W., Li P.*, Feng X.B., Mercury speciation and mobility in salt slurry and soils from an abandoned chlor-alkali plant, Southwest China. Science of the Total Environment, 2019, 652:900-906, DOI: 10.1016/j.scitotenv.2018.10.296
[124]Li X.Y., Li Z*., Wu T., Chen J., Fu C., Zhang L.M., Feng X.B*., Fu X.W., Tang L., Wang Z., Wang Z., Atmospheric mercury emissions from two pre-calciner cement plants in Southwest China. Atmospheric Environment, 2019, 199:177-188. doi.org/10.1016/j.atmosenv.2018.11.011
[125]Xu XH., Gu CH., Feng X.B., Qiu G.L., Shang LH*., Xu ZD., Lu Q.H., Xiao D.A., Wang H., Lin Y*., Larrsen T., Weir building: a potential cost-effective method for reducing mercury leaching from abandoned mining tailings. Science of the total Environment, 2019, 651:171-178. DOI: 10.1016/j.scitotenv.2018.09.150
[126]Wang J.X., Xing Y., Xie Y.Y., Meng Y., Jia J.C., Feng X.B.*, The use of calcite-enriched clay mineral and diammonium phosphate as novel immobilization agents for mercury remediation: spectral investigations and field applications. Science of the Total Environment, 2019, 646:1615-1623, DOI: 10.1016/j.scitotenv.2018.07.225
[127]Zhu W., Li Z.G., Li P., Yu B., Lin C-J., Sommar J., Feng X.B.* Re-emission of legacy mercury from soil adjacent to closed point sources of Hg emission. Environmental Pollution, 2018, 242: 718-727, DOI: 10.1016/j.envpol.2018.07.002
[128]Wang J.X., Anderson C.W.N., Xing Y., Fan Y., Xia J., Shaheen S.M., Rinklebe J., Feng X.B*., Thiosulphate-induced phytoextraction of Hg in Brassica juncea: Integrated spectroscopic investigations of Hg translocation mechanism. Environmental Pollution, 2018, 242: 986-993 , 10.1016/j.envpol.2018.07.065
[129]Yin R., Guo Z., Hu L., Liu W., Hurley J. P., Lepak R. F., Lin T., Feng X. B., Li X.D*., Mercury Inputs to Chinese Marginal Seas - Impact of Industrialization and Development of China. Journal of Geophysical Research - Oceans, 2018, 123(8), 5599-5611. DOI: 10.1029/2017JC013691
[130]Li X.Y., Li Z.,* Lin C-J., Bi X.Y., Liu J.L., Feng X.B*., Zhang H., Chen J., Wu T., Health risks of heavy metal exposure through vegetable consumption near a large-scale Pb/Zn smelter in central China. Ecotoxicology and Environmental Safety, 2018, 161:33-110. DOI: 10.1016/j.ecoenv.2018.05.080
[131]Wang X., Lin C-J*., Feng X.B*., Yang W., Fu X.W., Zhang H., Wu Q., Wang S., Assessment of regional mercury deposition and emission outflow in China Mainland. Journal of Geophysical Research- Atmospheres, 2018, 123(17): 9868-9890, DOI: 10.1029/2018JD028350
[132]Lian M., Shang L., Duan Z., Li Y., Zhao G., Zhu S., Qiu G., Meng B., Sommar J., Feng X.B*., Svanberg S*., Lidar mapping of atmospheric atomic mercury in the Wanshan area, China. Environmental Pollution, 2018,240: 353-358 , doi.org/10.1016/j.envpol.2018.04.104
[133]Li P., Du B., Chan H.M., Feng X.B*., Li B.X*., Mercury bioaccumulation and its toxic effects in rats fed with methylmercury polluted rice. Science of the total Environment, 2018, 633:93-99. DOI: 10.1016/j.scitotenv.2018.03.185
[134]Fu X.W*., Yang X., Tang Q., Ming L., Lin T., Lin C-J., Li X.D., Feng X.B*., Isotopic Composition of Gaseous Elemental Mercury in the Marine Boundary Layer of East China Sea. Journal of Geophysical Research- Atmospheres, 2018, 123(14): 7656-7669, DOI:10.1029/2018JD028671
[135]Wang JX., Ying Y., Li P., Xia J., Liu T., Feng X.B.*, Chemically-assisted phytoextraction from Metal(loid)s-polluted Soils at A Typical Carlin-type Gold Mining Area in Southwest China. Journal of Cleaner Production, 2018, 189: 612-619, DOI:10.1016/j.jclepro.2018.04.082
[136]Wu Z., Feng X.B.*, Li P., Lin C-J, Qiu G., Wang X., Zhao H., Dong H., Comparison of in vitro digestion methods for determining bioaccessibility of Hg in rice of China. Journal of Environmental Sciences, 2018, 68: 185-193, DOI:10.1016/j.jes.2017.10.008
[137]Du B., Feng X.B*., Li P*., Yin R., Yu B., Sonke J.E., Guinot B., Anderson C.W.N., Maurice L. Use of Mercury Isotopes to Quantify Mercury Expousre Sources in Inland Populations, China. Environmental Science and Technology, 2018, 52, 5407-5417, DOI: 10.1021/acs.est.7b05638
[138]Manceau A*., Wang J.X., Rovezzi M., Glatzel P., Feng X.B*., Biogenesis of Mercury-Sulfur Nanoparticles in Plant Leaves from Atmospheric Gaseous Mercury. Environmental Science and Technology, 2018,52(7): 3935-3948. DOI: 10.1021/acs.est.7b05452
[139]Vishnivetskaya T. A.#, Hu H.#, Van Nostrand J. D., Wymore A. M., Xu X., Qiu G., Feng X.B., Zhou J., Brown S. D., Brandt C. C., Podar M., Gu B.,* Elias D. A.* Microbial Community Structure with Trends in Methylation Gene Diversity and Abundance in Mercury-Contaminated Rice Paddy Soils in Guizhou, China. Environmental Science: Processes & Impacts, 2018, : 20( 4): 673-685
[140]Meng B*., Li Y.B., Cui W.B., Jiang P., Liu, G.L., Wang Y.M., Richards J., Feng X.B., Cai Y. Tracing the uptake, transport, and fate of mercury in sawgrass (Cladium jamaicense) in the Florida Everglades using multi-isotope technique. Environmental Science and Technology, 2018, 52, 3384?3391, DOI: 10.1021/acs.est.7b04150
[141]Xu C.X., Yin R.S., Peng J.T*., Hurley, J.P., Lepak, R.F., Gao, J.F., Feng X.B., Hu R.Z., Bi X.W., Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu area, southwestern China. Mineralium Deposita, 2018, 53(3): 339-352. DOI: 10.1007/s00126-017-0743-7
[142]Hsu-Kim H*., Eckley C.S., Acha D., Feng X., Gilmour C.C., Jonsson S., Mitchell C. P. J. Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio, 2018, 47: 141-169. DOI 10.1007/s13280-017-1006-7
[143]Zhong SQ., Qiu G., Feng X*., Lin C. Sulfur and iron control on the accumulation of methylmercury and mercury in rice. Journal of Soil and Sediment, 2018, 18(2), 578-585, DOI: 10.1007/s11368-017-1786-1
[144]Xu X., Lin Y., Meng B., Feng X.B., Xu Z.D., Jiang Y.P., Zhong W., Hu Y., Qiu G.L*. The impact of an abandoned mercury mine on the environment in the Xiushan region, Chongqing, southwestern China. Applied Geochemistry, 2018, 88:267-275. DOI: 10.1016/j.apgeochem.2017.04.005
[145]Xu Q#., Zhao L#., Wang Y., Xie Q., Yin D., Feng X.B., Wang D.Y.*, Bioaccumulation characteristics of mercury in fish in the Three Gorges Reservoir, China. Environmental Pollution, 2018, 243:115-126.DOI:10.1016/j.envpol.2018.08.048
[146]Song Z., Li P*., Ding L., Li Z.G., Zhu W., He T.R., Feng X.B., Environmental mercury pollution by an abandoned chlor-alkali plant in Southwest China. Journal of Geochemical Exploration, 2018, 194:81-87. DOI:10.1016/j.gexplo.2018.07.017
[147]Qin C.Y., Chen M., Yan H., Shang L., Yao H., Li P*., Feng X.B.* Compound specific stable isotope determination of methylmercury in contaminated soil. Science of the Total Environment, 2018, 644: 406–412. doi:10.1016/j.scitotenv.2018.06.328
2、近5年中文核心期刊论文
[1] 冯新斌*,王训,孙广义,袁巍,植被生态系统汞的生物地球化学循环研究进展与挑战,地球科学,2022,47(11):4099-4108。
[1]冯新斌*,曹晓斌,付学吾,洪冰,关晖,李平,王敬富,王仕禄,张干,赵时真,环境地球化学研究近十年若干进展,矿物岩石地球化学通报,2021,40(20):253-289.
doi:10. 19658/ j. issn. 1007-2802. 2021. 40. 016
[2]冯新斌*,史建波,李平,阴永光,江桂斌,我国汞污染研究与履约进展,中国科学院院刊,2020,35(11):1344-1350
[3]孟博,胡海燕,李平,冯新斌*,稻田生态系统汞的形态转化及同位素分馏,矿物岩石地球化学通报,2020,39(1):12-23
[4]程泓,刘丙祥,冯新斌,查健锐,张学胜,高毅,典型燃煤电厂汞的分布、迁移及释放特征研究,地球与环境, 2018, 46 (1):43-49.
[5]孟其义, 钱晓莉, 陈淼, 赵蕾, 冯新斌, 孟博,稻田生态系统汞的生物地球化学研究进展, 生态学杂志, 2018,37(5): 268-285.
[6]朱宗强, 王训, 王衡, LIN, Che-Jen,冯新斌*,单一汞同位素示踪大气与农田作物汞的交换过程, 环境化学,2018,37(3):419-427.
[7]孙荣国,范丽,冯新斌,臧庆大,杨国蒙,陈卓,2016年宁夏回族自治区PM2.5浓度时空分布特征,地球与环境,2018,46(4):348-354.
[8]高兰兰,傅成城,冯新斌,李仲根,周少奇,贵州东部某燃煤电厂汞排放对周边环境空气及土壤的影响,中国环境监测,2018,34(3):51-58.
3、近5年发表专著
[1] 张爱华,冯新斌主编,环境汞砷污染与健康,武汉:湖北科学技术出版社,1-260页,2019.12
[2] Feng X.et al. Biogeochemical Cycle of Mercury in Reservoir Systems in Wujiang River Basin, Southwest China, Science Press and Springer Nature Singapore Pte Ltd. PP:1-416, 2018, https://doi.org/10.1007/978-981-10-6719-8_1