1. Sommar, J., et al., Measurements of fractionated gaseous mercury concentrations over northwestern and central Europe, 1995-99. Journal of Environmental Monitoring, 1999. 1(5): p. 435-439.
2. Sommar, J., X. Feng, and O. Lindqvist, Speciation of volatile mercury species present in digester and deposit gases. Applied organometallic chemistry, 1999. 13(6): p. 441-445.
3. Sommar, J., et al., Field Approaches to Measure Hg Exchange Between Natural Surfaces and the Atmosphere A Review. Critical Reviews in Environmental Science and Technology, 2013. 43(15): p. 1657-1739.
4. Sommar, J., et al., A whole-air relaxed eddy accumulation measurement system for sampling vertical vapour exchange of elemental mercury. Tellus Series B-Chemical and Physical Meteorology, 2013. 65.
5. Sommar, J., et al., Seasonal variations in metallic mercury (Hg-0) vapor exchange over biannual wheat-corn rotation cropland in the North China Plain. Biogeosciences, 2016. 13(7): p. 2029-2049.
6. Sommar, J., et al., A whole-air relaxed eddy accumulation measurement system for sampling vertical vapour exchange of elemental mercury. Tellus Series B-Chemical and Physical Meteorology, 2013. 65: p. 21.
7. Sommar, J.O. and M.E. Andersson, Signal and distribution of volatile Mercury (Hg0) in the Marine High Arctic During Polar Summer in the Sequel of Enhanced Atmospheric Deposition of HgⅡ. 矿物岩石地球化学通报, 2008. 27(z1).
8. Andersson, M., et al., Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Marine Chemistry, 2008. 110(3): p. 190-194.
9. Andersson, M., et al., Accumulation of mercury in the Arctic Ocean. Marine Chemistry, 2008. 110: p. 190-194.
10. Deev, A., J. Sommar, and M. Okumura, Cavity ringdown spectrum of the forbidden (A) over-tilde (2) E ('')←(X) over-tilde (2) A (2)(') transition of NO3: Evidence for static Jahn-Teller distortion in the (A) over-tilde state. Journal of Chemical Physics, 2005. 122(22): p. Art. No. 224305.
11. Feng, X., et al., Earth surface natural mercury emission: Research progress and perspective. Chinese Journal of Ecology, 2011. 30(5): p. 845-856.
12. Feng, X., et al., Modified on-line monitoring of total gaseous mercury in flue gases using Semtech? Hg 2000 analyzer. Fresenius' journal of analytical chemistry, 2000. 368(5): p. 528-533.
13. Feng, X., et al., Improved determination of gaseous divalent mercury in ambient air using KCl coated denuders. Fresenius' journal of analytical chemistry, 2000. 366(5): p. 423-428.
14. Feng, X., et al., Exchange flux of total gaseous mercury between air and natural water surfaces in summer season. Science in China Series D: Earth Sciences, 2002. 45(3): p. 211-220.
15. Fu, X., et al., A review of studies on atmospheric mercury in China. Science of the Total Environment, 2012. 421- 422: p. 73-81.
16. He, J., et al., Mercury pollution in a mining area of Guizhou, China: Fluxes over contaminated surfaces and concentrations in air, biological and geological samples. Toxicological & Environmental Chemistry, 1998. 67(1-2): p. 225-236.
17. Li, J., et al., Short-time variation of mercury speciation in the urban of G?teborg during G?TE-2005. Atmospheric Environment, 2008. 42(36): p. 8382-8388.
18. Lin, C.-J., et al., Novel Dynamic Flux Chamber for Measuring Air-Surface Exchange of Hgo from Soils. Environmental Science & Technology, 2012. 46(16): p. 8910-8920.
19. Meng, B., et al., Distribution Patterns of Inorganic Mercury and Methylmercury in Tissues of Rice (Oryza sativa L.) Plants and Possible Bioaccumulation Pathways. Journal of Agricultural and Food Chemistry, 2010. 58(8): p. 4951-4958.
20. Okumura, M., et al., New insights into the Jahn–Teller effect in NO3 via the dark ? 2E''state. Physica Scripta, 2006. 73(1): p. C64.
21. Osterwalder, S., et al., A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux. Atmospheric Measurement Techniques, 2016. 9(2): p. 509-524.
22. Osterwalder, S., et al., Comparative study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland. Atmospheric Environment, 2018. 172: p. 16-25.
23. Sun, G., et al., Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br. Environmental Science & Technology, 2016. 50(17): p. 9232-9241.
24. Wang, X., et al., Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China. Atmospheric Chemistry and Physics, 2016. 16(17): p. 11125-11143.
25. Wang, X., et al., Using Mercury Isotopes To Understand Mercury Accumulation in the Montane Forest Floor of the Eastern Tibetan Plateau. Environmental Science & Technology, 2017. 51(2): p. 801-809.
26. Yu, B., et al., Isotopic Composition of Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air and in Vegetation. Environmental Science & Technology, 2016. 50(17): p. 9262-9269.
27. Zhang, H., et al., Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures. Scientific reports, 2013. 3.
28. Zhu, W., et al., Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review. Atmospheric Chemistry and Physics, 2016. 16(7): p. 4451-4480.
29. Zhu, W., et al., Highly elevated emission of mercury vapor due to the spontaneous combustion of refuse in a landfill. Atmospheric Environment, 2013. 79: p. 540-545.