• 联系我们
  • 首页
  • 实验室概况
    • 实验室简介
    • 主任致辞
    • 学术委员会
    • 现任领导
    • 联系我们
  • 科研队伍
    • 院士
    • 杰青类青年
    • 优青类青年
    • 青促会会员
    • 研究员
    • 副研究员
    • 助理研究员
    • 技术队伍
    • 管理人员
  • 科研信息
    • 科研进展
    • 重要项目
    • 获奖情况
    • 代表论文
    • 出版专著
    • 发明专利
  • 开放与合作
    • 学术活动
    • 开放课题
      • 开放课题申请
      • 历届开放课题
  • 研究平台
    • 仪器平台
      • 元素和形态分析系统
      • 微区分析观测系统
      • 同位素分析系统
      • 生物地球化学平台
    • 野外台站
      • 台站简介
      • 工作动态
  • 科学传播
    • 科普动态
    • 媒体采访
  • 学生工作
    • 学科介绍
    • 招生目录
    • 研究生导师
    • 学生获奖
  • 党建与文化
  • 人才招聘
  • 通知公告
  • 图片新闻
  • 友情链接
  1. 当前位置:首页科研信息科研进展
科研进展

稻田生态系统汞同位素分馏特征研究取得新进展

来源:本站原创发布时间:2020-11-24【 大  中  小 】

 汞是一种有毒重金属污染物,而甲基汞是毒性最强的汞化合物之一。甲基汞易于在水生食物链生物富集和放大,因此食用鱼肉是人体甲基汞暴露的主要途径,日本的水俣病就是食用鱼肉导致的甲基汞中毒事件。同时汞是一种全球性污染物,人类活动排放到大气中的汞,可以随大气环流进行长距离传输进行全球循环,因此环境汞污染受到国际学术界的高度关注。旨在全球范围内减少汞使用和排放的《关于汞的水俣公约》已于2017年8月生效。近年来,中国科学院地球化学研究所(地化所)冯新斌团队发现汞矿区大米可以富集甲基汞,食用大米是贵州汞矿区、贵州省甚至我国南方居民甲基汞暴露的主要途径;水稻对于甲基汞和无机汞表现出不同的富集过程,稻田土壤是水稻甲基汞的主要来源,水稻对甲基汞的富集是一个吸收-运移-富集的动态过程。因此,定量示踪大米甲基汞和无机汞的来源及富集过程,对汞污染地区稻田汞污染控制及修复具有重要意义。 

 汞稳定同位素是示踪汞源和环境过程的有利工具。基于总汞同位素二元混合模型,冯新斌团队发现水稻各部位从土壤和大气吸收汞的比例不同(Yin et al., 2013)。但是水稻体内甲基汞与无机汞的转运途径和来源存在显着差异,因此研究水稻甲基汞与无机汞的同位素组成将有助于准确了解其来源和富集过程。基于前期建立的土壤样品乙基化/GC分离甲基汞提取方法(Qin et al., 2018)和水稻植株甲基汞选择提取方法(Li et al., 2017),选择贵州万山汞矿区的稻田生态系统作为研究对象,按照四个生长周期分别采集大气、灌溉水、根系土和水稻植株样品,系统研究稻田生态系统甲基汞和无机汞的汞同位素分馏特征。 

 稻田生态系统无机汞与甲基汞的汞同位素分馏特征存在显著差异。水稻植株各部位无机汞的 202Hg及 199Hg值具有显著差异,其无机汞的来源各不相同(图1 a, b)。根据无机汞的汞同位素非质量分馏特征及模型计算,发现根系无机汞17-42%来自土壤、58-83%来自灌溉水,叶片和果实的无机汞几乎全部来自大气(~100%),而水稻茎同时受到土壤、灌溉水和大气汞的影响。不同生长周期水稻植株各部位的甲基汞汞同位素特征( 202Hg和 199Hg)非常接近而且逐渐趋向土壤甲基汞(图1c, d),水稻根部从土壤吸收甲基汞的过程以及植株各部位之间的甲基汞传输不存在明显的汞同位素质量分馏和非质量分馏。根据水稻植株各部位与大气、土壤、灌溉水甲基汞的汞同位素非质量分馏特征推断,水稻植株中的甲基汞全部来自于灌溉水-土壤系统。这与团队前期研究结果一致,而汞同位素研究提供了更加直接有力的证据。 

 研究系统揭示稻田生态系统甲基汞和无机汞的汞同位素分馏特征(图2),并定量计算灌溉水、土壤和大气对水稻植株各组织甲基汞和无机汞的贡献比例,展示了形态汞同位素应用于环境研究的巨大潜力,为深入理解水稻富集甲基汞和无机汞的机制和稻田土壤汞污染控制和修复提供重要科学依据。相关成果在环境科学领域著名SCI刊物Environ. Sci. Technol.发表:Qin C., Du B., Yin R., Meng B.,Fu X., Li P.,* Zhang L.,Feng X.* Isotopic Fractionation and Source Appointment of Methylmercury and Inorganic Mercury in a Paddy Ecosystem. Environ. Sci. Technol. 2020, 54, 22, 14334-14342。博士生覃重阳为论文第一作者,李平研究员和冯新斌研究员为共同通讯作者,研究受到中国科学院前沿重点项目、国家自然科学基金和中国科学院青年创新促进会共同资助。 

 

  图1 不同生长时期水稻组织和大气、土壤、灌溉水的无机汞和甲基汞的 202Hg和 199Hg值 

  图2. 水稻植株各部位和大气、土壤、灌溉水的无机汞(左)和甲基汞(右)汞同位素分馏特征 

参考文献: 

 Li, P., Du, B., Maurice, L., Laffont, L., Lagane, C., Point, D., Feng, X. (2017). Mercury Isotope Signatures of Methylmercury in Rice Samples from the Wanshan Mercury Mining Area, China: Environmental Implications. Environmental Science & Technology, 51(21), 12321-12328. 

 Qin, C., Chen, M., Yan, H., Shang, L., Yao, H., Li, P., Feng, X. (2018). Compound specific stable isotope determination of methylmercury in contaminated soil. Science of the Total Environment, 644, 406-412. 

 Yin, R., Feng, X., Meng, B. (2013). Stable Mercury Isotope Variation in Rice Plants (Oryza sativa L.) from the Wanshan Mercury Mining District, SW China. Environmental Science & Technology, 47(5), 2238-2245. 

(冯新斌课题组/供稿)


附件下载:

上一篇:末次冰期以来亚洲季风区大气降尘来源及动态研究取得新进展
版权所有 © 中国科学院地球化学研究所 环境地球化学国家重点实验室
电话:0851-85891334传真:0851-85891334电子邮件:xudan@vip.gyig.ac.cn
ICP备案序号:黔ICP备13001045号-1