职 称: | 研究员 |
---|---|
学 历: | 博士生导师 |
邮 件: | liuxueyan@mail.gyig.ac.cn |
地 址: | 贵州省贵阳市观山湖区林城西路99号 |
1. 2024.10~至今:中国科学院地球化学研究所,研究员
2. 2022.01~2024.10:天津大学,地球系统科学学院,讲席教授.
3. 2015.07~2024.10:天津大学,地球系统科学学院,教授.
4. 2009.11~2015.6:东京农业与工业大学,生物圈环境科学系,博士后.
5. 2008.05~2009.10:中国科学院地球化学研究所,环境地球化学国家重点实验室,助理研究员.
6. 2003.09~2008.07:中国科学院地球化学研究所,环境地球化学(硕-博连读),理学博士学位.
7. 1999.09~2003.07:贵州师范大学,地理科学,理学学士学位.
领域:同位素地球化学、生物地球化学、环境地球科学、全球变化生态学
方向:氮污染与水-土-气环境质量演变、氮循环与生物圈结构和功能演化
地球系统氮循环的变化深刻影响地质和现代时间尺度的环境质量和生态功能。团队致力于氮同位素自然丰度(分析方法、分馏、质量平衡模型)、硝酸根氧同位素方法原理、表层地球系统氮循环过程同位素示踪与模拟研究,在全球和区域大气活性氮来源和植被氮素过程同位素示踪方面取得原创成果,为氮循环效应评估和活性氮管理提供新的科学依据。
目前,已以第一或通讯作者在Nature Communications (3篇)、PNAS、National Science Review、Global Biogeochemical Cycles(2篇)、Global Change Biology、New Phytologists、ES&T等发表,论文曾被 Science Daily、Nature China、Science Foundation in China 选为研究亮点和重点评述,入选2021年度中国氮循环十大科学进展和入围国际前沿地球奖(Frontiers Planet Prize)
中国土壤学会碳中和与全球变化工作委员会副主任委员;中国矿物岩石地球化学学会生态地球化学专委会副主任委员;中国矿物岩石地球化学学会地表与生物地球化学专委会委员;中国矿物岩石地球化学学会气体地球化学专委会委员;中国生态学学会长期生态研究专业委员会委员 ;中国生态学会稳定同位素生态学专委会委员;辽宁省稳定同位素重点实验室学术委员会副主任;Ecological Processes副主编 ;生态学杂志、应用环境与生物学报,编委
论著目录:
方向一:大气系统活性氮来源和过程
[1] Sijie Feng, Mengru Wang, Mathew R. Heal, Xuejun Liu, Xueyan Liu, Yuanhong Zhao, Maryna Strokal, Carolien Kroeze, Fusuo Zhang, Wen Xu. (2024) The impact of emissions controls on atmospheric nitrogen inputs to Chinese river basins highlights the urgency of ammonia abatement. Science Advances, accepted.
[2] Xue-Yan Liu*. (2023) Ammonia mitigation campaign with smallholder farmers. Nature Food, https://doi.org/10.1038/s43016-023-00839-1.
[3] Kun Zhang, Xue-Yan Liu, Wei Song, To Thi Hien, Xianfeng Wang, Zhili Chen, Ho Truong Nam Hai, Shaoneng He*. (2023) Precipitation records of anthropogenic nitrogen pollution in two metropolitan cities of Southeast Asia. Urban Climate, 52, 101749.
[4] Wei Song, Xue-Yan Liu*. (2023) Nitrogen isotope signatures of oxidized nitrogen species from biomass burning. Applied Geochemistry, 150, 105569.
[5] Wei Song, Zhi-Li Chen, Yi-Meng Yin, Xue-Yan Liu*. (2023) Primary nitrate from combustion-related sources biases the Δ17O differentiation of formation pathway contributions of atmospheric secondary nitrate. Atmospheric Environment, 296, 119574.
[6] Wei Song, Xue-Yan Liu*. (2023) Source oxygen contributions of primary nitrate emitted from biomass burning. Science of the Total Environment, 85, 158736.
[7] Zhi-Li Chen, Wei Song, Chao-Chen Hu, Xue-Jun Liu, Guan-Yi Chen, Wendell W. Walters, Greg Michalski, Cong-Qiang Liu, David Fowler, Xue-Yan Liu*. (2022) Significant contributions of combustion-related sources to ammonia emissions. Nature Communications, 7710, https://doi.org/10.1038/s41467-022-35381-4.
[8] Wei Song, Xue-Yan Liu*, Benjamin Z. Houlton, Cong-Qiang Liu. (2022) Isotopic constraints confirm the significant role of microbial nitrogen oxides emissions from the land and ocean environment. National Science Review, nwac106, https://doi.org/10.1093/nsr/nwac106.
[9] Song W, Liu XY*, Liu CQ. (2021). New constraints on isotopic effects and major sources of nitrate in atmospheric particulates by combining δ15N and Δ17O signatures. Journal of Geophysical Research: Atmospheres, 126 (16): e2020JD034168. https://doi.org/10.1029/2020JD034168
[10] Huang H, Song W, Liu XY*. (2021). Significant contributions of combustion NH3 and non-fossil fuel NOx to increases of nitrogen deposition in southwestern China over past five decades. Global Change Biology, 27 (18): 4392–4402.
[11] Xu SY, Huang H, Song W, Liu XY*. (2021) Lichen nitrogen concentrations and isotopes for indicating nitrogen deposition levels and source changes. Science of the Total Environment, 787: 147616.
[12] Yuk-Chun Chan, Mathew J. Evans, Pengzhen He, Christopher D. Holmes, Lyatt Jaeglé, Prasad Kasibhatla, Xue-Yan Liu, Tomás Sherwen, Joel A. Thornton, Xuan Wang, Zhouqing Xie, Shuting Zhai, Becky Alexander*. (2021). Heterogeneous nitrate production mechanisms in intense haze events in the North China Plain. Journal of Geophysical Research: Atmospheres, 126 (9): e2021JD034688. https://doi.org/10.1029/2021JD034688.
[13] Song W, Liu XY*, Hu CC, Chen GY, Liu XJ, Walters WW, Michalski G, Liu CQ. (2021) Important contributions of non-fossil fuel nitrogen oxides emissions. Nature Communications, 12: 243. https://doi.org/10.1038/s41467-020-20356-0.
[14] Liu XY*, Yin YM, Song W. (2020) Nitrogen isotope differences between major atmospheric NOy species: Implications for transformation and deposition processes. Environmental Science & Technology Letters, 7(4), 227–233.
[15] Zhang CH, Guo HR, Huang H, Ma TY, Song W, Chen CJ, Liu XY*. (2020) Atmospheric nitrogen deposition and its responses to anthropogenic emissions in a global hotspot region. Atmospheric Research, 248: 105317. https://doi.org/10.1016/j.atmosres.2020.105137.
[16] Song W, Liu XY*, Wang YL, Tong YD, Bai ZP, Liu CQ. (2020) Nitrogen isotope differences between atmospheric nitrate and corresponding nitrogen oxides: A new constraint using oxygen isotopes. Science of the Total Environment, 701, 134515. https://doi.org/10.1016/j.scitotenv.2019.134515.
[17] Song W, Wang YL, Yang W, Sun XC, Tong YD, Wang XM, Liu CQ, Bai ZP*, Liu XY*. (2019) Isotopic evaluation on relative contributions of major NOx sources to nitrate of PM2.5 in Beijing. Environmental Pollution, 248: 183–190.
[18] Wang YL, Song W, Yang W, Sun XC, Tong YD, Wang XM, Liu CQ, Bai ZP*, Liu XY*. (2019) Influences of atmospheric pollution on the contributions of major oxidation pathways to PM2.5 nitrate formation in Beijing. Journal of Geophysical Research: Atmospheres, 124: 4174–4185.
[19] Zheng XD, Liu XY*, Song W, Sun XC, Liu CQ. (2018) Nitrogen isotope variations of ammonium across rain events: Implications for different scavenging between ammonia and particulate ammonium. Environmental Pollution, 239: 392–398.
[20] Dong YP, Liu XY*, Sun XC*, Song W, Zheng XD, Li R, Liu CQ. (2017) Inter-species and intra-annual variations of moss nitrogen utilization: implications for nitrogen deposition assessment. Environmental Pollution, 230: 506–515.
[21] Wang YL, Liu XY*, Song W, Yang W, Han B, Dou XY, Zhao XD, Song ZL, Liu CQ, Bai ZP*. (2017) Source appointment of nitrogen in PM2.5 based on bulk δ15N signatures and a Bayesian isotope mixing model. Tellus B: Chemical and Physical Meteorology, 69:1, 1299672, DOI: 10.1080/16000889.2017.1299672.
[22] Liu XJ*, Xu W, Duan L, Du EZ, Pan YP, Lu XK, Zhang L, Wu ZY, Wang XM, Zhang Y, Shen JL, Song L, Feng ZZ, Liu XY, Song W, Tang AH, Zhang YY, Zhang XY, Collett JL. (2017) Atmospheric nitrogen emission, deposition, and air quality impacts in China: An overview. Current Pollution Reports, 3: 65–77. (All authors contributed equally).
[23] Liu XY*, Xiao HW, Xiao HY*, Song W, Sun XC, Zheng XD, Liu CQ, Keisuke Koba. (2017) Stable isotope analyses of precipitation nitrogen sources in Guiyang, southwestern China. Environmental Pollution, 230: 486–494.
[24] Fang YT*, Koba K, Wang XM, Wen DZ, Li J, Takebayshi Y, Liu XY, Yoh M. (2011) Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen polluted city of southern China. Atmospheric Chemistry and Physics, 11: 1313–1325.
[25] Xiao HY*, Tang CG, Xiao HW, Liu XY, Liu CQ. (2010) Stable sulphur and nitrogen isotopes of the moss Haplocladium microphyllum at urban, rural and forested sites. Atmospheric Environment, 44(34): 4312–4317.
[26] Xiao HY, Tang CG, Xiao HW, Wang YL, Liu XY, Liu CQ. (2010) Tissue S/N ratios and stable isotopes (δ34S and δ15N) of epilithic mosses (Haplocladium microphyllum) for showing air pollution in urban cities in Southern China. Environmental Pollution, 158(5): 1726–1732.
[27] Xiao HY*, Tang CG, Xiao HW, Liu XY, Liu CQ. (2010) Mosses indicating atmospheric nitrogen deposition and sources in the Yangtze River drainage basin, China. Journal of Geophysical Research: Atmospheres, 115 (D14301).
[28] Liu XY*, Xiao HY, Liu CQ, Xiao HW, Wang YL. (2009) Assessment of atmospheric sulfur with the epilithic moss Haplocladium microphyllum: Evidences from tissue sulfur and δ34S analysis. Environmental Pollution, 157: 2066–2071.
[29] Xiao HY, Tang CG, Xiao HW, Liu XY, Liu CQ. (2009) Identifying the change of atmospheric sulphur sources in China using isotopic ratios in mosses. Journal of Geophysical Research: Atmospheres, 114, D16304, doi: 10.1029/2009JD012034.
[30] Xiao HY*, Tang CG, Liu XY, Xiao HW, Liu CQ. (2008) Sulphur isotopic ratios in mosses indicating atmospheric sulphur sources in southern Chinese mountainous areas. Geophysical Research Letters, 35, L19807, doi: 10.1029/2008GL034255.
[31] Liu XY*, Xiao HY*, Liu CQ, Li YY, Xiao HW. (2008) Atmospheric transport of urban-derived NHx: Evidences from nitrogen concentration and δ15N in epilithic mosses at Guiyang, SW China. Environmental Pollution, 156(3): 715–722.
[32] Liu XY*, Xiao HY*, Liu CQ, Li YY, Xiao HW. (2008) Tissue nitrogen and 15N natural abundance in epilithic mosses for indicating atmospheric N deposition at Guiyang area, SW China. Applied Geochemistry, 23(9): 2708–2715.
[33] 张琨, 宋韦, 陈志立, 刘学炎*. (2024) 新加坡和胡志明城区降水离子组成及来源分析. 地球与环境, 52(3): 309–320.
[34] 刘美娜,陈志立,宋韦,刘学炎*. (2023) 北京东灵山大气氮沉降水平及变化特征. 生态学杂志,12: 2987–2997.
[35] 肖化云,刘学炎,刘丛强. (2011) 石生苔藓组织氮含量和氮同位素指示贵阳地区大气氮沉降与迁移的研究. 矿物岩石地球化学通报, 30(1): 18–25.
[36] 肖红伟,肖化云,王燕丽,唐从国,刘学炎. (2010) 典型污染城市9d连续大气降水化学特征: 以贵阳市为例. 环境科学, 31(4): 33–38.
[37] 肖红伟,肖化云,唐从国,刘学炎,刘丛强,林碧娜. (2010) 贵阳地区氨排放量估算. 地球与环境, 381(1): 21–25.
[38] 刘学炎*,肖化云,刘丛强,唐从国. (2009) 基于石生苔藓氮含量量化贵阳地区大气氮沉降. 生态学报, 29(12): 6646–6653.
[39] 刘学炎*,肖化云,刘丛强,李友谊,李琳. (2008) 石生苔藓氮含量和氮同位素指示贵阳地区大气氮沉降的空间变化和来源. 环境科学, 29(7): 34–39.
[40] 刘学炎*,肖化云,刘丛强,肖红伟. (2008) 生长条件对苔藓硫含量和硫同位素指示大气硫沉降的影响. 环境科学研究, 21(5): 145–149.
[41] 刘学炎,肖化云*,刘丛强,肖红伟. (2008) 贵阳地区主要大气氮源的沉降机制与分布:基于石生苔藓氮含量和氮同位素的证据. 地球化学, 37(5): 455–461.
[42] 刘学炎,肖化云*,刘丛强,李友谊. (2007) 植物叶片氮同位素(δ15N)指示大气氮沉降的探讨. 矿物岩石地球化学通报, 26(4): 405–409.
方向二:陆地系统氮生物地球化学
[1] Yao, Wenrui; Dong, Yuanyuan; Qi, Yulin*; Han, Yufu; Ge, Jinfeng; Volmer, Dietrich; Zhang, Zhiyang; Liu, Xue-Yan; Li, Si-Liang; Fu, Pingqing. (2024). Tracking the changes of DOM composition, transformation and cycling mechanism triggered by priming effect: insights from incubation experiments. Environmental Science & Technology, In press.
[2] Wei-Guo Fan, Xue-Yan Liu*, Mingzhong Zhou, Wei Song, Yongyun Hu, Yan-An Shen, Cong-Qiang Liu. (2024) Sedimentary 17O-nitrate constraints on Phanerozoic dry-humid degrees and alternations in South China. Geophysical Research Letters, 51(20), e2024GL111475.
[3] Xinhou Zhang, Wen Xiao, Changchun Song, Jinbo Zhang, Xueyan Liu, Rong Mao*. (2024) Nutrient responses of vascular plants to Alnus sibirica encroachment in a boreal peatland. Oecologia, 206: 1–10.
[4] Chao-Chen Hu, Xue-Yan Liu*, Avery W. Driscoll, Yuan-Wen Kuang, E. N. Jack Brookshire, Xiao-Tao Lü, Chong-Juan Chen, Wei Song, Rong Mao, Cong-Qiang Liu, Benjamin Z Houlton. (2024) Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants. Nature Communications, 15, 6407. https://doi.org/10.1038/s41467-024-50674-6.
[5] Xue-Yan Liu*, Mei-Na Liu, Wan-Xiao Qin, Wei Song. (2023) Isotope constraints on nitrate exchanges between precipitation and forest canopy. Global Biogeochemical Cycles, 37, e2023GB007920. https://doi.org/10.1029/2023GB007920.
[6] Ziyi Wang, Xiaohong Liu*, Josep Peñuelas, J. Julio Camarero, Xiaomin Zeng, Xueyan Liu, Liangju Zhao*, Guobao Xu, Lixin Wang. (2023) Recent shift from dominant nitrogen to CO2 fertilization control on the growth of mature Qinghai spruce. Agricultural and Forest Meteorology, 343, 109779.
[7] Shaopan Xia, Zhaoliang Song*, Bhupinder Pal Singh, Laodong Guo, Nanthi Bolan, Weiqi Wang, Guanghui Lin, Yin Fang, Xuefa Wen, Jing Wang, Iain P. Hartley, Xueyan Liu, Yidong Wang & Hailong Wang. (2023) Contrasting patterns and controls of soil carbon and nitrogen isotope compositions in coastal wetlands of China. Plant and Soil, https://doi.org/10.1007/s11104-023-06034-2.
[8] Chao-Chen Hu, Xue-Yan Liu*. (2022) Plant nitrogen-use strategies and their responses to the urban elevation of atmospheric nitrogen deposition in southwestern China. Environmental Pollution, 31, 119969. https://doi.org/10.1016/j.envpol.2022.119969.
[9] Zhong-Cong Sun, Tian-Yi Ma, Shi-Qi Xu, Hao-Ran Guo, Chao-Chen Hu, Chong-Juan Chen, Wei Song, Xue-Yan Liu*. (2022) Levels and variations of soil bioavailable nitrogen among forests under high atmospheric nitrogen deposition. Science of the Total Environment, 838, 156405.
[10] Ziheng Zou, Shuqing Li, Jie Wu, Shumin Guo, Yihe Zhang, Mengyuan Huang, Eugenia Valsami-Jones, Iseult Lynch, Xueyan Liu, Jinyang Wang*, Jianwen Zou*. (2022) Effects of nanopolystyrene addition on nitrogen fertilizer fate, gaseous loss of N from the soil, and soil microbial community composition. Journal of Hazardous Materials, 438, 129509.
[11] Hao-Ran Guo, Yun Wu, Chao-Chen Hu, Xue-Yan Liu*. (2022) Elevated nitrate preference over ammonium in aquatic plants by nitrogen loadings in a city river. Journal of Geophysical Research: Biogeosciences, DOI: 10.1029/2021JG006614.
[12] Shi-Qi Xu, Xue-Yan Liu*, Zhong-Cong Sun, Chao-Chen Hu, Wolfgang Wanek, Keisuke Koba. (2022) Isotopic elucidation of microbial nitrogen transformations in forest soils. Global Biogeochemical Cycles, DOI: 10.1029/2021GB007070.
[13] Chao-Chen Hu, Xue-Yan Liu*, Ya-Xin Yan,Yan-Bao Lei, Yun-Hong Tan, Cong-Qiang Liu. (2022) A new isotope framework to decipher leaf-root nitrogen allocation and assimilation among plants in a tropical invaded ecosystem. Science of the Total Environment, 86, 151203. https://doi.org/10.1016/j.scitotenv.2021.151203.
[14] Chen CJ, Liu XY*, Wang XW, Hu CC, Xu SQ, Mao R, Bu ZJ, Fang YT, Koba K. (2021) Different leaf carbon, nitrogen, and phosphorus stoichiometry and carbon and nitrogen isotopes among peatland plants in northeastern China. Plant and Soil, 467: 345–357.
[15] Zhong-Cong Sun, Chao-Chen Hu, Di Wu, Guo-Peng Chen, Xiao-Qiang Lu*, Xue-Yan Liu*. (2021) Reconstruction of evaporation losses based on stable isotopes of stream water in a mountain watershed. Acta Geochimica, 40 (2): 176-183.
[16] Liu XY*, Wu D, Song X, Dong YP, Chen CJ, Song W, Liu CQ, Koba K. (2020) A non-steady state model based on dual nitrogen and oxygen isotopes to constrain moss nitrate uptake and reduction. Journal of Geophysical Research: Biogeosciences, 125(6): e2019JG005498. doi.org/10.1029/2019JG005498.
[17] Wu D, Wang XW, Xu SQ, Chen CJ, Mao R, Liu XY*. (2020) Plant phenols contents and their changes with nitrogen availability in peatlands of northeastern China. Journal of Plant Ecology, 13 (6): 713–721.
[18] Ma TY, Liu XY*, Xu SQ, Guo HR, Huang H, Hu CC, Wu D, Sun ZC, Chen CJ, Song W. (2020) Levels and variations of soil organic carbon and total nitrogen among forests in a hotspot region of high nitrogen deposition. Science of the Total Environment, 713, 136620. doi.org/10.1016/j.scitotenv.2020.136620.
[19] Xiaoqiang Lu, Yan Liu, Li Liu, Zhao Zhang, Feilong Hu, Xueyan Liu, Xinchao Sun*. (2020) Rainfall partitioning and associated nitrate and sulfate fluxes along a slope gradient in a subtropical broadleaved forest. Forest Ecology and Management, 591, 125584
[20] Zhou XL, Wang A, Hobbie EA, Zhu FF, Qu YY, Dai LM, Li DJ, Liu XY, Zhu WX, Koba K, Li YH*, Fang YT*. (2020) Mature conifers assimilate nitrate as efficiently as ammonium from soils in four forest plantations. New Phytologist, doi: 10.1111/nph.17110.
[21] Dan Kou, Guibiao Yang, Fei Li, Xuehui Feng, Dianye Zhang, Chao Mao, Qiwen Zhang, Yunfeng Peng, Chengjun Ji, Qiuan Zhu, Yunting Fang, Xueyan Liu, Ri Xu, Siqi Li, Xunhua Zheng, Jia Deng, Jingyun Fang, Yuanhe Yang. (2020) Progressive nitrogen limitation across the Tibetan alpine permafrost region. Nature Communications, 11: 3331, https://doi.org/10.1038/s41467-020-17169-6.
[22] Yindong Tong, Mengzhu Wang, Josep Peñuelas, Xueyan Liu, Hans W. Paerl, James J. Elser, Jordi Sardans, Raoul-Marie Couture, Thorjørn Larssen, Hongying Hu, Xin Dong*, Wei He, Wei Zhang, Xuejun Wang, Yang Zhang, Yi Liu, Siyu Zeng, Xiangzhen Kong, Annette B.G. Janssen, Yan Lin*. (2020) Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. PNAS, 117(21): 11566–11572.
[23] Hu CC, Lei YB, Tan YH, Sun XC, Xu H, Liu CQ, Liu XY*. (2019) Plant nitrogen and phosphorus utilization under invasive pressure in a montane ecosystem of tropical China. Journal of Ecology, 107: 372–386
[24] Dong YP, Huang H, Song W, Sun XC, Wang M, Zhang W, Wang KL, Liu CQ, Liu XY*. (2019) Natural 13C and 15N abundance of moss-substrate systems on limestones and sandstones in a karst area of subtropical China. Catena, 180: 8–15.
[25] Feifei Zhu, Luming Dai, Erik A. Hobbie, Keisuke, Koba, Xueyan Liu, Weixing Zhu, Geshere A. Gurmesa, Shaonan Huang, Shanlong Li, Yinghua Li, Yunting Fang*. (2019). Uptake patterns of glycine, ammonium, and nitrate differ among four common tree species of northeast China. Frontiers in Plant Science, 10, 799. DOI: 10.3389/fpls.2019.00799.
[26] Chen LL, Cao YH, Zhang Z, Liu XY, Teramage MT, Zhang XD, Sun XC*. (2019) Collection and chemical compositions in the xylem sap of trunks from mature pine (Pinus tabuliformis Carr.) forests. Plant Physiology and Biochemistry. 142: 482–489.
[27] Zheng-Hong Tan*; Jun-Fu Zhao; Guanze Wang; Meng-Ping Chen; Lianyan Yang; Chunsheng He; Natalia Restrepo-Coupe; Shushi Peng; Xueyan Liu; Humberto R da Rocha; Yoshiko Kosugi; Takashi Hirano; Scott Saleska; Michael Goulden; Jiye Zeng; Fangjun Ding; Fu Gao; Liang Song*. (2019) Surface conductance for evapotranspiration of tropical forests: calculations, variations, and controls,Agricultural and Forest Meteorology, 275, 317–328.
[28] Liu XY*, Koba K*, Koyama L, Hobbie SE, Weiss MS, Inagaki Y, Shaver GR, Giblin AE, Hobara S, Nadelhoffer KJ, Sommerkorn M, Rastetter EB, Kling GW, Laundre JA, Yano Y, Makabe A, Yano M, Liu CQ. (2018) Nitrate is an important nitrogen source for arctic tundra plants. PNAS, 115(13): 3398–3403.
[29] Cao YH, Lu CY*, Sun XC, Shi Y, Liu XY*. (2018) Effects of elevated ozone on the contribution of nitrogen rhizodeposition by spring wheat to different soil N pools. Plant and Soil, 425: 321–333.
[30] Tong YD, Li JQ, Qi M, Zhang XY, Wang MZ, Liu XY, Zhang W, Wang XJ, Lu YR, Lin Y. Lin Y. (2018) Impacts of water residence time on nitrogen budget of lakes and reservoirs. Science of the Total Environment, 646: 75–83.
[31] Tong YD, Qiao Z, Wang XJ, Liu XY, Chen GY, Zhang W, Dong X, Yan ZB, Han WX, Wang R, Wang MZ, Lin Y. (2018) Human Activities Decoupled Lake Nutrient cycles in populated regions of China. Chemosphere, 210: 1070–1081.
[32] Sun XC*, Onda Y, Otsuki K, Kato H, Gomi T, Liu XY*. (2018) Effect of canopy openness and meteorological factors on throughfall isotopic compositions in a Japanese cypress. Hydrological Processes, 32: 1038–1049.
[33] Tong YD, Zhang W, Wang XJ, Couture RM, Larssen T, Zhou F, Li J, Liang HJ, Liu XY, Bu XG, Zhao Y, He W, Zhang QG, Lin Y*. (2017) Decline in Chinese lake phosphorus concentrations accompanied by shift in sources since 2006. Nature Geoscience, 10: 507–511.(封面论文)
[34] Sun XC*, Onda Y, Otsuki K, Kato H, Gomi T, Liu XY*. (2017) Change in evapotranspiration partitioning after heavy thinning in a Japanese cypress plantation. Trees-Structure and Function, 31: 1411–1421.
[35] Sun XC*, Onda Y, Kato H, Gomi T, Liu XY*. (2017) Estimation of throughfall with changing stand structures for Japanese cypress and cedar plantations. Forest Ecology and Management, 402: 145–156.
[36] Yunting Fang, Keisuke Koba, Akiko Makabe, Chieko Takahashi, Weixing Zhu, Takahiro Hayashi, Azusa A. Hokari, Rieko Urakawa, Edith Bai, Benjamin Z. Houlton, Dan Xi, Shasha Zhang, Kayo Matsushita, Ying Tu, Dongwei Liu, Feifei Zhu, Zhenyu Wang, Guoyi Zhou, Dexiang Chen, Tomoko Makita, Hiroto Toda, Xueyan Liu, Quansheng Chen, Deqiang Zhang, Yide Li, and Muneoki Yoh. (2015). Microbial denitrification dominates nitrate losses from forest ecosystems. PNAS, 112(5): 1470–1474.
[37] Li XD, Liu CQ, Liu XL, Yu J, Liu XY. (2015) Sources and Processes Affecting Nitrate in a Dam-Controlled Subtropical River, Southwest China. Aquatic Geochemistry, 20: 483–500.
[38] Guo FS, Song ZL, Sullivan L, Wang HL, Liu XY, Wang XD, Li ZM, Zhao YY. (2015) Enhancing phytolith carbon sequestration in rice ecosystems through basalt powder amendment. Chinese Science Bulletin, 60(6): 591–597.
[39] Liu XY*, Koba K, Makabe A, Liu CQ. (2014). Nitrate dynamics in natural plants: Insights based on the concentration and natural isotope abundances of tissue nitrate. Frontiers in Plant Science, 5: 355. doi: 10.3389/fpls.2014.00355.
[40] Liu XY, Koba K*, Makabe A, Li XD, Yoh M, Liu CQ. (2013) Ammonium first: natural mosses prefer atmospheric ammonium but vary utilization of dissolved organic nitrogen depending on habitat and nitrogen deposition. New Phytologist, 199(2): 407–419.
[41] Liu XY, Koba K*, Takebayashi Y, Liu CQ, Fang YT, Yoh M. (2013). Dual N and O isotopes of nitrate in natural plants: first insights into individual variability and organ-specific pattern. Biogeochemistry, 114: 399–411.
[42] Fang YT, Koba K, Yoh M*, Makabe A, Liu XY. (2013) Pattern of foliar δ15N and its controls in Eastern Asian forests. Ecological Research, 28: 735–748.
[43] Liu XY, Koba K*, Liu CQ, Li XD, Yoh M. (2012). Pitfalls and new mechanisms in moss isotope bio-monitoring of atmospheric nitrogen deposition. Environmental Science & Technology, 46(22): 12557–12566.
[44] Liu XY, Koba K*, Takebayashi Y, Liu CQ, Fang YT, Yoh M. (2012) Preliminary insights into δ15N and δ18O of nitrate in natural mosses: A new application of the denitrifier method. Environmental Pollution, 162: 48–55.
[45] Liu XY, Koba K*, Yoh M, Liu CQ. (2012). Nitrogen and oxygen isotope effects of tissue nitrate associated with nitrate acquisition and utilization in the moss Hypnum plumaeforme. Functional Plant Biology, 39(7): 598–608.
[46] Fang YT, Koba K*, Makabe A, Zhu FF, Fan SY, Liu XY, Yoh M. (2012). Low δ18O values of nitrate produced from nitrification in temperate forest soils. Environmental Science & Technology, 46(16): 8723–8730.
[47] Liu XY*, Xiao HY, Liu CQ. (2011) Physiological and isotopic signals in epilithic mosses for indicating anthropogenic sulfur on the urban-rural scale. Ecological Indicators, 11: 1245–1250.
[58] Liu XY*, Xiao HY, Liu CQ, Li YY, Xiao HW, Wang YL. (2010) Response of stable carbon isotope in epilithic mosses to atmospheric nitrogen deposition. Environmental Pollution, 158: 2273–2281.
[49] Liu XY*, Xiao HY*, Liu CQ, Li YY, Xiao HW. (2008) Stable carbon and nitrogen isotopes of the moss Haplocladium microphyllum in an urban and a background area (SW China): the role of environmental conditions and atmospheric nitrogen deposition. Atmospheric Environment, 42(21): 5413–5423.
[50] Liu XY, Xiao HY*, Liu CQ, Li YY. (2007) δ13C and δ15N of moss (Haplocladium microphyllum (Hedw.) Broth) for indicating environment variations and canopy retention on atmospheric nitrogen deposition. Atmospheric Environment, 41(23): 4897–4907. (该论文2007年被 Nature China选为研究亮点和重点评述Highlighted by Nature China: Bio-indicators: A mossy start).
[51] 陈润玉, 胡雯恵,刘学炎*. (2024) 应用离子吸收动力学方法比较鹿蕊地衣对不同氮素的吸收能力. 应用生态学报, 35(7):DOI: 10.13287/ j.1001-9332.202407.016.
[52] 孔凯, 孙众从, 马天翼, 刘学炎*. (2023) 京津冀地区森林土壤酚含量及其变化机制. 应用与环境生物学报, 29(6): DOI: 10.19675/j.cnki.1006-687x.2023.04024.
[53] 吴云,胡朝臣,刘学炎*. (2021) 城市河流水生植物氮含量和氮同位素记录及其对水体氮污染的响应. 地球与环境, 3: 260–269.
[54] 许浩,胡朝臣,许士麒,孙新超,刘学炎*. (2018) 外来植物入侵对土壤氮有效性的影响. 植物生态学报, 42(11): 1120–1130.
[55] 李瑞,胡朝臣,许士麒,吴迪,董玉平,孙新超,毛瑢,王宪伟*,刘学炎*. (2018) 大兴安岭泥炭地植物叶片碳氮磷含量及其化学计量学特征. 植物生态学报, 42(12): 1154–1167.
[56] 胡朝臣,刘学炎*,类延宝,谭运洪,张鹏,董玉平,刘丛强. (2016) 西双版纳外来入侵植物及其共存种叶片氮、磷化学 计量特征. 植物生态学报, 40(11): 1145–1153.
[57] 郭凤山,宋照亮*,Leigh Sullivan,王海龙,刘学炎,王旭东,李自民,赵玉营. (2015) 岩粉施加对水稻生态系统植硅体碳的增汇作用. 科学通报,60(10): 963. DOI: 10.1360/csb2015-60-10-963.
[58] 刘学炎*,肖化云,刘丛强,肖红伟. (2009) 石生苔藓碳含量和碳同位素对城市地区人为二氧化碳和大气氮沉降变化的响应. 环境科学, 30(1): 23–28.
[59] 刘学炎,刘丛强. (2009) 大气氮沉降的苔藓地球化学记录(第四章). 生物地球化学过程与地表物质循环–西南喀斯特土壤-植被系统生源要素循环(刘丛强 等著). 北京:科学出版社. pp: 157–214.
[60] 李友谊,肖化云*,刘学炎,胡健,刘丛强. (2008) 贵阳大气总悬浮颗粒物(TSP)中水溶无机离子的化学特性及季节变化特征. 矿物岩石地球化学通报, 27(1): 43–49.
[61] 刘学炎,肖化云*,刘丛强,李友谊. (2007) 碳氮稳定同位素指示苔藓生境特征以及树冠对大气氮沉降的吸收. 地球化学, 36(3): 286–294.
[62] 刘学炎,肖化云*,刘丛强,李友谊. (2007) 苔藓新老组织及其根际土壤的碳氮元素含量和同位素组成(δ13C和δ15N)对比. 植物生态学报, 31(6): 1168–1173.
[63] 李军, 刘丛强, 肖化云, 刘学炎, 李友谊, 王仕禄. (2006) 太湖北部夏季浮游藻类多样性与水质评价. 生态环境, 15(3): 453–456.